3.5.52 \(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{x^3 (d+e x)} \, dx\) [452]

3.5.52.1 Optimal result
3.5.52.2 Mathematica [A] (verified)
3.5.52.3 Rubi [A] (verified)
3.5.52.4 Maple [B] (verified)
3.5.52.5 Fricas [A] (verification not implemented)
3.5.52.6 Sympy [F(-1)]
3.5.52.7 Maxima [F]
3.5.52.8 Giac [B] (verification not implemented)
3.5.52.9 Mupad [F(-1)]

3.5.52.1 Optimal result

Integrand size = 40, antiderivative size = 256 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^3 (d+e x)} \, dx=-\frac {\left (2 a d e+\left (5 c d^2+a e^2\right ) x\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 d x^2}+c^{3/2} d^{3/2} \sqrt {e} \text {arctanh}\left (\frac {c d^2+a e^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )-\frac {\left (3 c^2 d^4+6 a c d^2 e^2-a^2 e^4\right ) \text {arctanh}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 \sqrt {a} d^{3/2} \sqrt {e}} \]

output
-1/8*(-a^2*e^4+6*a*c*d^2*e^2+3*c^2*d^4)*arctanh(1/2*(2*a*d*e+(a*e^2+c*d^2) 
*x)/a^(1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/d^(3/ 
2)/a^(1/2)/e^(1/2)+c^(3/2)*d^(3/2)*arctanh(1/2*(2*c*d*e*x+a*e^2+c*d^2)/c^( 
1/2)/d^(1/2)/e^(1/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))*e^(1/2)-1/4* 
(2*a*d*e+(a*e^2+5*c*d^2)*x)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/d/x^2
 
3.5.52.2 Mathematica [A] (verified)

Time = 0.50 (sec) , antiderivative size = 243, normalized size of antiderivative = 0.95 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^3 (d+e x)} \, dx=-\frac {\sqrt {a e+c d x} \sqrt {d+e x} \left (\sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a e+c d x} \sqrt {d+e x} \left (5 c d^2 x+a e (2 d+e x)\right )-8 \sqrt {a} c^{3/2} d^3 e x^2 \text {arctanh}\left (\frac {\sqrt {c} \sqrt {d} \sqrt {d+e x}}{\sqrt {e} \sqrt {a e+c d x}}\right )+\left (3 c^2 d^4+6 a c d^2 e^2-a^2 e^4\right ) x^2 \text {arctanh}\left (\frac {\sqrt {a} \sqrt {e} \sqrt {d+e x}}{\sqrt {d} \sqrt {a e+c d x}}\right )\right )}{4 \sqrt {a} d^{3/2} \sqrt {e} x^2 \sqrt {(a e+c d x) (d+e x)}} \]

input
Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(x^3*(d + e*x)),x]
 
output
-1/4*(Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*(Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt[a*e + 
c*d*x]*Sqrt[d + e*x]*(5*c*d^2*x + a*e*(2*d + e*x)) - 8*Sqrt[a]*c^(3/2)*d^3 
*e*x^2*ArcTanh[(Sqrt[c]*Sqrt[d]*Sqrt[d + e*x])/(Sqrt[e]*Sqrt[a*e + c*d*x]) 
] + (3*c^2*d^4 + 6*a*c*d^2*e^2 - a^2*e^4)*x^2*ArcTanh[(Sqrt[a]*Sqrt[e]*Sqr 
t[d + e*x])/(Sqrt[d]*Sqrt[a*e + c*d*x])]))/(Sqrt[a]*d^(3/2)*Sqrt[e]*x^2*Sq 
rt[(a*e + c*d*x)*(d + e*x)])
 
3.5.52.3 Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 263, normalized size of antiderivative = 1.03, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {1215, 1229, 27, 1269, 1092, 219, 1154, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{x^3 (d+e x)} \, dx\)

\(\Big \downarrow \) 1215

\(\displaystyle \int \frac {(a e+c d x) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{x^3}dx\)

\(\Big \downarrow \) 1229

\(\displaystyle -\frac {\int -\frac {a e \left (3 c^2 d^4+8 c^2 e x d^3+6 a c e^2 d^2-a^2 e^4\right )}{2 x \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{4 a d e}-\frac {\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2} \left (x \left (a e^2+5 c d^2\right )+2 a d e\right )}{4 d x^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {3 c^2 d^4+8 c^2 e x d^3+6 a c e^2 d^2-a^2 e^4}{x \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{8 d}-\frac {\left (x \left (a e^2+5 c d^2\right )+2 a d e\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 d x^2}\)

\(\Big \downarrow \) 1269

\(\displaystyle \frac {\left (-a^2 e^4+6 a c d^2 e^2+3 c^2 d^4\right ) \int \frac {1}{x \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx+8 c^2 d^3 e \int \frac {1}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx}{8 d}-\frac {\left (x \left (a e^2+5 c d^2\right )+2 a d e\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 d x^2}\)

\(\Big \downarrow \) 1092

\(\displaystyle \frac {\left (-a^2 e^4+6 a c d^2 e^2+3 c^2 d^4\right ) \int \frac {1}{x \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx+16 c^2 d^3 e \int \frac {1}{4 c d e-\frac {\left (c d^2+2 c e x d+a e^2\right )^2}{c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}d\frac {c d^2+2 c e x d+a e^2}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}}{8 d}-\frac {\left (x \left (a e^2+5 c d^2\right )+2 a d e\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 d x^2}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\left (-a^2 e^4+6 a c d^2 e^2+3 c^2 d^4\right ) \int \frac {1}{x \sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}dx+8 c^{3/2} d^{5/2} \sqrt {e} \text {arctanh}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 d}-\frac {\left (x \left (a e^2+5 c d^2\right )+2 a d e\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 d x^2}\)

\(\Big \downarrow \) 1154

\(\displaystyle \frac {8 c^{3/2} d^{5/2} \sqrt {e} \text {arctanh}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )-2 \left (-a^2 e^4+6 a c d^2 e^2+3 c^2 d^4\right ) \int \frac {1}{4 a d e-\frac {\left (2 a d e+\left (c d^2+a e^2\right ) x\right )^2}{c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}d\frac {2 a d e+\left (c d^2+a e^2\right ) x}{\sqrt {c d e x^2+\left (c d^2+a e^2\right ) x+a d e}}}{8 d}-\frac {\left (x \left (a e^2+5 c d^2\right )+2 a d e\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 d x^2}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {8 c^{3/2} d^{5/2} \sqrt {e} \text {arctanh}\left (\frac {a e^2+c d^2+2 c d e x}{2 \sqrt {c} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )-\frac {\left (-a^2 e^4+6 a c d^2 e^2+3 c^2 d^4\right ) \text {arctanh}\left (\frac {x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{\sqrt {a} \sqrt {d} \sqrt {e}}}{8 d}-\frac {\left (x \left (a e^2+5 c d^2\right )+2 a d e\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 d x^2}\)

input
Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(x^3*(d + e*x)),x]
 
output
-1/4*((2*a*d*e + (5*c*d^2 + a*e^2)*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d 
*e*x^2])/(d*x^2) + (8*c^(3/2)*d^(5/2)*Sqrt[e]*ArcTanh[(c*d^2 + a*e^2 + 2*c 
*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e* 
x^2])] - ((3*c^2*d^4 + 6*a*c*d^2*e^2 - a^2*e^4)*ArcTanh[(2*a*d*e + (c*d^2 
+ a*e^2)*x)/(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c* 
d*e*x^2])])/(Sqrt[a]*Sqrt[d]*Sqrt[e]))/(8*d)
 

3.5.52.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1092
Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2   Subst[I 
nt[1/(4*c - x^2), x], x, (b + 2*c*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a 
, b, c}, x]
 

rule 1154
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Sym 
bol] :> Simp[-2   Subst[Int[1/(4*c*d^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, ( 
2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c 
, d, e}, x]
 

rule 1215
Int[(((f_.) + (g_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/( 
(d_) + (e_.)*(x_)), x_Symbol] :> Int[(a/d + c*(x/e))*(f + g*x)^n*(a + b*x + 
 c*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[c*d^2 - 
 b*d*e + a*e^2, 0] && GtQ[p, 0]
 

rule 1229
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(d + e*x)^(m + 1))*((a + b*x + c*x^2 
)^p/(e^2*(m + 1)*(m + 2)*(c*d^2 - b*d*e + a*e^2)))*((d*g - e*f*(m + 2))*(c* 
d^2 - b*d*e + a*e^2) - d*p*(2*c*d - b*e)*(e*f - d*g) - e*(g*(m + 1)*(c*d^2 
- b*d*e + a*e^2) + p*(2*c*d - b*e)*(e*f - d*g))*x), x] - Simp[p/(e^2*(m + 1 
)*(m + 2)*(c*d^2 - b*d*e + a*e^2))   Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2 
)^(p - 1)*Simp[2*a*c*e*(e*f - d*g)*(m + 2) + b^2*e*(d*g*(p + 1) - e*f*(m + 
p + 2)) + b*(a*e^2*g*(m + 1) - c*d*(d*g*(2*p + 1) - e*f*(m + 2*p + 2))) - c 
*(2*c*d*(d*g*(2*p + 1) - e*f*(m + 2*p + 2)) - e*(2*a*e*g*(m + 1) - b*(d*g*( 
m - 2*p) + e*f*(m + 2*p + 2))))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g 
}, x] && GtQ[p, 0] && LtQ[m, -2] && LtQ[m + 2*p, 0] &&  !ILtQ[m + 2*p + 3, 
0]
 

rule 1269
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[g/e   Int[(d + e*x)^(m + 1)*(a + b*x + 
 c*x^2)^p, x], x] + Simp[(e*f - d*g)/e   Int[(d + e*x)^m*(a + b*x + c*x^2)^ 
p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] &&  !IGtQ[m, 0]
 
3.5.52.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2437\) vs. \(2(218)=436\).

Time = 0.77 (sec) , antiderivative size = 2438, normalized size of antiderivative = 9.52

method result size
default \(\text {Expression too large to display}\) \(2438\)

input
int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x^3/(e*x+d),x,method=_RETURNVE 
RBOSE)
 
output
1/d*(-1/2/a/d/e/x^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)+1/4*(a*e^2+c*d 
^2)/a/d/e*(-1/a/d/e/x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)+3/2*(a*e^2+c 
*d^2)/a/d/e*(1/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+1/2*(a*e^2+c*d^2) 
*(1/4*(2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2 
)+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*ln((1/2*e^2*a+1/2*c*d^2+c*d*e* 
x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(c*d*e)^(1/2))+a 
*d*e*((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/2*(a*e^2+c*d^2)*ln((1/2*e^ 
2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/ 
2))/(c*d*e)^(1/2)-a*d*e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e 
)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x)))+4*c/a*(1/8*(2*c*d*e* 
x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+3/16*(4*a*c*d 
^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*(1/4*(2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a 
*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*l 
n((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e 
*x^2)^(1/2))/(c*d*e)^(1/2))))+3/2*c/a*(1/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^ 
2)^(3/2)+1/2*(a*e^2+c*d^2)*(1/4*(2*c*d*e*x+a*e^2+c*d^2)/c/d/e*(a*d*e+(a*e^ 
2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/8*(4*a*c*d^2*e^2-(a*e^2+c*d^2)^2)/c/d/e*ln(( 
1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^ 
2)^(1/2))/(c*d*e)^(1/2))+a*d*e*((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/ 
2*(a*e^2+c*d^2)*ln((1/2*e^2*a+1/2*c*d^2+c*d*e*x)/(c*d*e)^(1/2)+(a*d*e+(...
 
3.5.52.5 Fricas [A] (verification not implemented)

Time = 1.43 (sec) , antiderivative size = 1375, normalized size of antiderivative = 5.37 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^3 (d+e x)} \, dx=\text {Too large to display} \]

input
integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x^3/(e*x+d),x, algorithm 
="fricas")
 
output
[1/16*(8*sqrt(c*d*e)*a*c*d^3*e*x^2*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c 
*d^2*e^2 + a^2*e^4 + 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d* 
e*x + c*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) - (3*c^2*d 
^4 + 6*a*c*d^2*e^2 - a^2*e^4)*sqrt(a*d*e)*x^2*log((8*a^2*d^2*e^2 + (c^2*d^ 
4 + 6*a*c*d^2*e^2 + a^2*e^4)*x^2 + 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e 
^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(a*d*e) + 8*(a*c*d^3*e + a^2*d*e^ 
3)*x)/x^2) - 4*(2*a^2*d^2*e^2 + (5*a*c*d^3*e + a^2*d*e^3)*x)*sqrt(c*d*e*x^ 
2 + a*d*e + (c*d^2 + a*e^2)*x))/(a*d^2*e*x^2), -1/16*(16*sqrt(-c*d*e)*a*c* 
d^3*e*x^2*arctan(1/2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e* 
x + c*d^2 + a*e^2)*sqrt(-c*d*e)/(c^2*d^2*e^2*x^2 + a*c*d^2*e^2 + (c^2*d^3* 
e + a*c*d*e^3)*x)) + (3*c^2*d^4 + 6*a*c*d^2*e^2 - a^2*e^4)*sqrt(a*d*e)*x^2 
*log((8*a^2*d^2*e^2 + (c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4)*x^2 + 4*sqrt(c*d 
*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(a*d 
*e) + 8*(a*c*d^3*e + a^2*d*e^3)*x)/x^2) + 4*(2*a^2*d^2*e^2 + (5*a*c*d^3*e 
+ a^2*d*e^3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/(a*d^2*e*x^2) 
, 1/8*(4*sqrt(c*d*e)*a*c*d^3*e*x^2*log(8*c^2*d^2*e^2*x^2 + c^2*d^4 + 6*a*c 
*d^2*e^2 + a^2*e^4 + 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d* 
e*x + c*d^2 + a*e^2)*sqrt(c*d*e) + 8*(c^2*d^3*e + a*c*d*e^3)*x) + (3*c^2*d 
^4 + 6*a*c*d^2*e^2 - a^2*e^4)*sqrt(-a*d*e)*x^2*arctan(1/2*sqrt(c*d*e*x^2 + 
 a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-a*d*e)/...
 
3.5.52.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^3 (d+e x)} \, dx=\text {Timed out} \]

input
integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/x**3/(e*x+d),x)
 
output
Timed out
 
3.5.52.7 Maxima [F]

\[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^3 (d+e x)} \, dx=\int { \frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}}}{{\left (e x + d\right )} x^{3}} \,d x } \]

input
integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x^3/(e*x+d),x, algorithm 
="maxima")
 
output
integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)/((e*x + d)*x^3), x 
)
 
3.5.52.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 626 vs. \(2 (218) = 436\).

Time = 0.44 (sec) , antiderivative size = 626, normalized size of antiderivative = 2.45 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^3 (d+e x)} \, dx=-\frac {c^{2} d^{2} e \log \left ({\left | -c d^{2} - a e^{2} - 2 \, \sqrt {c d e} {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} \right |}\right )}{\sqrt {c d e}} + \frac {{\left (3 \, c^{2} d^{4} + 6 \, a c d^{2} e^{2} - a^{2} e^{4}\right )} \arctan \left (-\frac {\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}}{\sqrt {-a d e}}\right )}{4 \, \sqrt {-a d e} d} - \frac {3 \, {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} a c^{2} d^{5} e - 2 \, {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} a^{2} c d^{3} e^{3} - {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )} a^{3} d e^{5} + 8 \, \sqrt {c d e} a^{2} c d^{4} e^{2} - 5 \, {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{3} c^{2} d^{4} - 10 \, {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{3} a c d^{2} e^{2} - {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{3} a^{2} e^{4} - 16 \, \sqrt {c d e} {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{2} a c d^{3} e - 8 \, \sqrt {c d e} {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{2} a^{2} d e^{3}}{4 \, {\left (a d e - {\left (\sqrt {c d e} x - \sqrt {c d e x^{2} + c d^{2} x + a e^{2} x + a d e}\right )}^{2}\right )}^{2} d} \]

input
integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/x^3/(e*x+d),x, algorithm 
="giac")
 
output
-c^2*d^2*e*log(abs(-c*d^2 - a*e^2 - 2*sqrt(c*d*e)*(sqrt(c*d*e)*x - sqrt(c* 
d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))))/sqrt(c*d*e) + 1/4*(3*c^2*d^4 + 6*a 
*c*d^2*e^2 - a^2*e^4)*arctan(-(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + 
a*e^2*x + a*d*e))/sqrt(-a*d*e))/(sqrt(-a*d*e)*d) - 1/4*(3*(sqrt(c*d*e)*x - 
 sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))*a*c^2*d^5*e - 2*(sqrt(c*d*e) 
*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))*a^2*c*d^3*e^3 - (sqrt(c* 
d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))*a^3*d*e^5 + 8*sqrt(c 
*d*e)*a^2*c*d^4*e^2 - 5*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2* 
x + a*d*e))^3*c^2*d^4 - 10*(sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e 
^2*x + a*d*e))^3*a*c*d^2*e^2 - (sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + 
 a*e^2*x + a*d*e))^3*a^2*e^4 - 16*sqrt(c*d*e)*(sqrt(c*d*e)*x - sqrt(c*d*e* 
x^2 + c*d^2*x + a*e^2*x + a*d*e))^2*a*c*d^3*e - 8*sqrt(c*d*e)*(sqrt(c*d*e) 
*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^2*a^2*d*e^3)/((a*d*e - ( 
sqrt(c*d*e)*x - sqrt(c*d*e*x^2 + c*d^2*x + a*e^2*x + a*d*e))^2)^2*d)
 
3.5.52.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{x^3 (d+e x)} \, dx=\int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}}{x^3\,\left (d+e\,x\right )} \,d x \]

input
int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/(x^3*(d + e*x)),x)
 
output
int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/(x^3*(d + e*x)), x)